论文标题
一个学位定理,以简单地关闭自动空间
A degree theorem for the simplicial closure of Auter space
论文作者
论文摘要
基于图形的程度是通用扰动后必需的非基础顶点的数量。 Hatcher - Vogtmann's Temalem定理指出,最多d的Auter图的子复合物是(D-1)连接的。我们将学位的定义扩展到了自动空间的简单关闭,并证明了Hatcher-Vogtmann在这种情况下的结果。
The degree of a based graph is the number of essential nonbasepoint vertices after generic perturbation. Hatcher--Vogtmann's degree theorem states that the subcomplex of Auter space of graphs of degree at most d is (d-1)-connected. We extend the definition of degree to the simplicial closure of Auter space and prove a version of Hatcher--Vogtmann's result in this context.