论文标题
边界层线性问题的物理意识到的神经网络
Physics-Aware Neural Networks for Boundary Layer Linear Problems
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Physics-Informed Neural Networks (PINNs) are machine learning tools that approximate the solution of general partial differential equations (PDEs) by adding them in some form as terms of the loss/cost function of a Neural Network. Most pieces of work in the area of PINNs tackle non-linear PDEs. Nevertheless, many interesting problems involving linear PDEs may benefit from PINNs; these include parametric studies, multi-query problems, and parabolic (transient) PDEs. The purpose of this paper is to explore PINNs for linear PDEs whose solutions may present one or more boundary layers. More specifically, we analyze the steady-state reaction-advection-diffusion equation in regimes in which the diffusive coefficient is small in comparison with the reactive or advective coefficients. We show that adding information about these coefficients as predictor variables in a PINN results in better prediction models than in a PINN that only uses spatial information as predictor variables. This finding may be instrumental in multiscale problems where the coefficients of the PDEs present high variability in small spatiotemporal regions of the domain, and therefore PINNs may be employed together with domain decomposition techniques to efficiently approximate the PDEs locally at each partition of the spatiotemporal domain, without resorting to different learned PINN models at each of these partitions.