论文标题
部分可观测时空混沌系统的无模型预测
Surfaces of coordinate finite type in the Lorentz-Minkowski 3-space
论文作者
论文摘要
在本文中,我们研究了3维洛伦兹 - 米科夫斯基(Lorentz-Minkowski)空间中革命表面的类别,其曲线曲率是无呈呈现的,其位置向量x满足条件ΔIIIX= ax,其中a是第3顺序的正方形矩阵,ΔIII表示表面二级基础型laplace Operator s surface III III III的laplace操作员。我们表明,这种表面是真实或虚构半径的最小或伪圈。
In this article, we study the class of surfaces of revolution in the 3-dimensional Lorentz-Minkowski space with nonvanishing Gauss curvature whose position vector x satisfies the condition ΔIIIx = Ax, where A is a square matrix of order 3 and ΔIII denotes the Laplace operator of the second fundamental form III of the surface. We show that such surfaces are either minimal or pseudospheres of a real or imaginary radius.