论文标题

部分可观测时空混沌系统的无模型预测

Veritas: Answering Causal Queries from Video Streaming Traces

论文作者

Bothra, Chandan, Gao, Jianfei, Rao, Sanjay, Ribeiro, Bruno

论文摘要

在本文中,我们试图回答是否有问题 - 即,给定的现有已部署网络系统的记录数据,如果我们更改了系统的设计(这项任务也称为因果推理),则绩效影响会产生什么影响。我们做出三项贡献。首先,我们在自适应比特率视频流的背景下暴露了因果推断的复杂性,这是一个充满挑战的领域,其中会话期间的网络条件充当了潜在和混杂的变量的顺序,并且会议中的任何一个变化都会对会议的其余部分产生叠加的影响。其次,我们提出了Veritas,这是一个新颖的框架,可以解决视频流的因果推理,而无需诉诸随机试验。与Veritas的积分是一种易于解释的特定领域的ML模型(一种嵌入式隐藏的Markov模型),该模型将潜在的随机过程(视频会话可以实现的固有带宽)与实际观察(下载时间)相关联,同时利用控制变量(例如TCP州(例如,会coption窗口))在下载视频conund的“ Contemion consect”之类的控制变量。我们通过在仿真测试床上进行的实验表明,Veritas可以回答反事实查询(例如,如果使用不同的缓冲区大小,则完成的视频会话的性能)和介入的查询(例如,为下一个会话中下一个块的每个可能的视频质量选择估算每个可能的视频质量选择的下载时间)。在这样做的过程中,Veritas的精度接近理想的甲骨文,同时表现出色的基线方法,而Fugu(一个现成的神经网络)都没有考虑因果效应。

In this paper, we seek to answer what-if questions - i.e., given recorded data of an existing deployed networked system, what would be the performance impact if we changed the design of the system (a task also known as causal inference). We make three contributions. First, we expose the complexity of causal inference in the context of adaptive bit rate video streaming, a challenging domain where the network conditions during the session act as a sequence of latent and confounding variables, and a change at any point in the session has a cascading impact on the rest of the session. Second, we present Veritas, a novel framework that tackles causal reasoning for video streaming without resorting to randomised trials. Integral to Veritas is an easy to interpret domain-specific ML model (an embedded Hidden Markov Model) that relates the latent stochastic process (intrinsic bandwidth that the video session can achieve) to actual observations (download times) while exploiting control variables such as the TCP state (e.g., congestion window) observed at the start of the download of video chunks. We show through experiments on an emulation testbed that Veritas can answer both counterfactual queries (e.g., the performance of a completed video session had it used a different buffer size) and interventional queries (e.g., estimating the download time for every possible video quality choice for the next chunk in a session in progress). In doing so, Veritas achieves accuracy close to an ideal oracle, while significantly outperforming both a commonly used baseline approach, and Fugu (an off-the-shelf neural network) neither of which account for causal effects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源