论文标题

ARRID:基于ANN的旋转动力学,用于鲁棒和集成设计

ARRID: ANN-based Rotordynamics for Robust and Integrated Design

论文作者

Massoudi, Soheyl, Schiffmann, Jürg

论文摘要

这项研究的目的是介绍基于ANN的软件,以在健壮和集成设计的背景下快速评估转型。它基于由在散布网络应用程序中运行的人工神经网络的集合制成的替代模型。与当前模型相比,替代模型的使用使计算增加了三个数量级。 ARRID提供了快速的性能信息,包括制造偏差的效果。因此,它可以帮助设计师在设计过程的早期做出最佳的设计选择。设计师可以在几秒钟内操纵设计参数和操作条件以获取性能信息。

The purpose of this study is to introduce ANN-based software for the fast evaluation of rotordynamics in the context of robust and integrated design. It is based on a surrogate model made of ensembles of artificial neural networks running in a Bokeh web application. The use of a surrogate model has sped up the computation by three orders of magnitude compared to the current models. ARRID offers fast performance information, including the effect of manufacturing deviations. As such, it helps the designer to make optimal design choices early in the design process. The designer can manipulate the parameters of the design and the operating conditions to obtain performance information in a matter of seconds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源