论文标题
在避开图案的定位上
On pattern-avoiding permutons
论文作者
论文摘要
排列限制的理论导致限制称为置换子的对象,这是单位正方形上的某些骨值测量。我们证明,避免给定的订单$ k $置换的置换物具有特别简单的结构。也就是说,几乎所有释放的拆卸纤维(例如,沿X轴)仅由原子组成,最多最多$(k-1)$多,而这种界限很清晰。我们用它来简单地证明“置换去除引理”。
The theory of limits of permutations leads to limit objects called permutons, which are certain Borel measures on the unit square. We prove that permutons avoiding a given permutation of order $k$ have a particularly simple structure. Namely, almost every fiber of the disintegration of the permuton (say, along the x-axis) consists only of atoms, at most $(k-1)$ many, and this bound is sharp. We use this to give a simple proof of the `permutation removal lemma'.