论文标题

在避开图案的定位上

On pattern-avoiding permutons

论文作者

Garbe, Frederik, Hladký, Jan, Kun, Gábor, Pekárková, Kristýna

论文摘要

排列限制的理论导致限制称为置换子的对象,这是单位正方形上的某些骨值测量。我们证明,避免给定的订单$ k $置换的置换物具有特别简单的结构。也就是说,几乎所有释放的拆卸纤维(例如,沿X轴)仅由原子组成,最多最多$(k-1)$多,而这种界限很清晰。我们用它来简单地证明“置换去除引理”。

The theory of limits of permutations leads to limit objects called permutons, which are certain Borel measures on the unit square. We prove that permutons avoiding a given permutation of order $k$ have a particularly simple structure. Namely, almost every fiber of the disintegration of the permuton (say, along the x-axis) consists only of atoms, at most $(k-1)$ many, and this bound is sharp. We use this to give a simple proof of the `permutation removal lemma'.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源