论文标题

Neuralsi:非线性动力学系统中的结构参数识别

NeuralSI: Structural Parameter Identification in Nonlinear Dynamical Systems

论文作者

Li, Xuyang, Bolandi, Hamed, Salem, Talal, Lajnef, Nizar, Boddeti, Vishnu Naresh

论文摘要

对复杂建筑环境的结构监测通常会遭受设计,实验室测试和实际建筑参数之间的不匹配。此外,现实世界的结构识别问题遇到了许多挑战。例如,缺乏准确的基线模型,高维度和复杂的多元部分微分方程(PDE)在训练和学习常规数据驱动算法方面遇到了很大的困难。本文通过增强使用神经网络来控制结构动力的PDE来探讨一个称为Neuralsi的新框架,用于结构识别。我们的方法试图从管理方程式估算非线性参数。我们考虑具有两个未知参数的非线性束的振动,一个参数代表几何和材料变化,另一个代表几何参数,主要通过阻尼捕获系统中的能量损失。参数估计的数据是从有限的一组测量值中获得的,这有利于在结构健康监测中的应用,在结构健康监测中,现有结构的确切状态通常未知,并且只能在现场收集有限的数据样本。也可以使用已识别的结构参数在标准和极端条件下训练有素的模型。我们与纯数据驱动的神经网络和其他经典物理信息的神经网络(PINN)进行了比较。我们的方法将位移分布中的插值和外推误差降低了基线上的两到五个数量级。代码可从https://github.com/human-analysis/naural-structural-isendification获得

Structural monitoring for complex built environments often suffers from mismatch between design, laboratory testing, and actual built parameters. Additionally, real-world structural identification problems encounter many challenges. For example, the lack of accurate baseline models, high dimensionality, and complex multivariate partial differential equations (PDEs) pose significant difficulties in training and learning conventional data-driven algorithms. This paper explores a new framework, dubbed NeuralSI, for structural identification by augmenting PDEs that govern structural dynamics with neural networks. Our approach seeks to estimate nonlinear parameters from governing equations. We consider the vibration of nonlinear beams with two unknown parameters, one that represents geometric and material variations, and another that captures energy losses in the system mainly through damping. The data for parameter estimation is obtained from a limited set of measurements, which is conducive to applications in structural health monitoring where the exact state of an existing structure is typically unknown and only a limited amount of data samples can be collected in the field. The trained model can also be extrapolated under both standard and extreme conditions using the identified structural parameters. We compare with pure data-driven Neural Networks and other classical Physics-Informed Neural Networks (PINNs). Our approach reduces both interpolation and extrapolation errors in displacement distribution by two to five orders of magnitude over the baselines. Code is available at https://github.com/human-analysis/neural-structural-identification

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源