论文标题

Floquet多间隙拓扑:非阿您编织和异常狄拉克弦阶段

Floquet multi-gap topology: Non-Abelian braiding and anomalous Dirac string phase

论文作者

Slager, Robert-Jan, Bouhon, Adrien, Ünal, F. Nur

论文摘要

物质的拓扑阶段跨越了许多研究,塑造了基本的追求,并为未来的应用提供了希望。尽管使用波函数的对称要求表征了很大一部分拓扑材料,但过去两年来见证了新型的多间隙依赖性拓扑状态的兴起,其特性超出了这些方法,尚待充分探索。在这些见解方面蓬勃发展,我们报告了只有在不平衡的浮标设置中才能出现的未知异常阶段和特性。特别是,我们确定了Floquet诱导的非亚洲编织机制,进而导致以异常的Euler类别为特征的相位,这是多间隙拓扑不变的主要例子。最引人注目的是,我们还检索了“异常的Dirac String阶段”的第一个示例。这种间隙的异常阶段具有非常规的狄拉克字符串配置,该配置通过边界上的异常边缘状态在物理上表现出来。因此,我们的结果不仅为探索本质动力学和实验性可行的多间隙拓扑阶段提供了垫脚石,而且还展示了一种强大的方法来观察这些非亚伯式过程,尤其是在量子模拟器中。

Topological phases of matter span a wide area of research shaping fundamental pursuits and offering promise for future applications. While a significant fraction of topological materials has been characterized using symmetry requirements of wave functions, the past two years have witnessed the rise of novel multi-gap dependent topological states, the properties of which go beyond these approaches and are yet to be fully explored. Thriving upon these insights, we report on uncharted anomalous phases and properties that can only arise in out-of-equilibrium Floquet settings. In particular, we identify Floquet-induced non-Abelian braiding mechanisms, which in turn lead to a phase characterized by an anomalous Euler class, the prime example of a multi-gap topological invariant. Most strikingly, we also retrieve the first example of an `anomalous Dirac string phase'. This gapped out-of-equilibrium phase features an unconventional Dirac string configuration that physically manifests itself via anomalous edge states on the boundary. Our results therefore not only provide a stepping stone for the exploration of intrinsically dynamical and experimentally viable multi-gap topological phases, but also demonstrate a powerful way to observe these non-Abelian processes notably in quantum simulators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源