论文标题
通过主动物质编程语言的动态流控制
Dynamic Flow Control Through Active Matter Programming Language
论文作者
论文摘要
细胞以空间和时间精度控制流体,远远超过了当前微流体技术的能力。细胞通过利用细胞骨架和运动蛋白的动态网络来实现这种上空的时空控制。因此,模拟细胞骨架蛋白网络的工程系统可能会导致开发一种新的,主动驱动的微流体设备,并且对现有技术的性能提高了。但是,重建的电动机微管系统常规生成混沌流,无法执行有用的任务。在这里,我们使用微管网络和运动蛋白网络开发了用于传输,分离和混合细胞和颗粒的编程流场的全光平台。我们采用数学建模进行设计优化,从而实现了实现微米尺度运输的流场的构建。我们使用该平台来证明活跃产生的流场可以探测聚合物(例如DNA)的延伸流变学,实现珠子和人类细胞的转运和混合,以及人类细胞簇的分离。我们的发现为通过编程工程动态微观尺度流提供了一种生物启发的途径,并展示了活跃物质系统作为工程技术的巨大潜力。
Cells control fluid flows with a spatial and temporal precision that far exceeds the capabilities of current microfluidic technologies. Cells achieve this superior spatio-temporal control by harnessing dynamic networks of cytoskeleton and motor proteins. Thus, engineering systems to mimic cytoskeletal protein networks could lead to the development of a new, active-matter-powered microfluidic device with improved performance over the existing technologies. However, reconstituted motor-microtubule systems conventionally generate chaotic flows and cannot perform useful tasks. Here, we develop an all-optical platform for programming flow fields for transport, separation and mixing of cells and particles using networks of microtubules and motor proteins reconstituted in vitro. We employ mathematical modeling for design optimization, which enables the construction of flow fields that achieves micron-scale transport. We use the platform to demonstrate that active-matter-generated flow fields can probe the extensional rheology of polymers, such as DNA, achieve transport and mixing of beads and human cells, and isolation of human cell clusters. Our findings provide a bio-inspired pathway for programmatically engineering dynamic micron-scale flows and demonstrate the vast potential of active matter systems as an engineering technology.