论文标题
rota-baxter操作员的变形和同质副本和$ \ Mathcal {o} $ - lie代数上的操作员
Deformations and homotopy of Rota-Baxter operators and $\mathcal{O}$-operators on Lie algebras
论文作者
论文摘要
本文简要介绍了一些关于Rota-Baxter操作员的变形和同型理论的最新工作以及更常见的$ \ Mathcal {o} $ - 通过差异级别的Lie代数方法,在Lie代数上进行了lie代数的操作员。进一步表明,这些理论提高了$ \ Mathcal {O} $ - 运算符和前代代数之间的现有连接,以达到变形和同型的水平。
This article gives a brief introduction to some recent work on deformation and homotopy theories of Rota-Baxter operators and more generally $\mathcal{O}$-operators on Lie algebras, by means of the differential graded Lie algebra approach. It is further shown that these theories lift the existing connection between $\mathcal{O}$-operators and pre-Lie algebras to the levels of deformations and homotopy.