论文标题

在计算极端运动统计的情况下,遇到波团的船只的初始条件的影响

Effects of varying initial conditions of ship encountering wave groups in computing extreme motion statistics

论文作者

Gong, Xianliang, Pan, Yulin

论文摘要

在计算不规则波场中计算船舶运动统计量(例如超出概率)时,常见的做法是代表大量波群的不规则波,并计算这些波群的分布中的运动统计量。虽然此过程大大降低了计算成本,但尚未量化此减少订单计算中引入的不确定性。通常,分离的组对连续波场的表示会丢失有关波相,频率调制和遇到波群的初始条件的信息,其中最后一个是船舶运动统计的最具影响力的因素。在本文中,我们测试了三种方法,将船只初始条件纳入超过概率的滚动运动的计算,即自然初始条件的方法,预先计算的初始条件和恒定的初始条件。对于不同的输入波光谱和船舶运动动力学(就通过非线性滚动方程建模的参数激发水平而言),三种方法的性能仔细测定,并证明了自然初始条件方法的优越性。我们最终表明,使用自然初始条件方法的计算可以通过使用变化异质的高斯过程回归来大大加速使用的顺序采样算法。

In computing ship motion statistics (e.g., exceeding probability) in an irregular wave field, it is a common practice to represent the irregular waves by a large number of wave groups and compute the motion statistics from the distribution of these wave groups. While this procedure significantly reduces the computational cost, the uncertainties introduced in this reduced-order computation have not been quantified. In general, the representation of a continuous wave field by separated groups loses information about wave phases, frequency modulation and initial conditions of ship when encountering the wave groups, among which the last one is arguably the most influential factor for the ship motion statistics. In this paper, we test three methods to incorporate the ship initial conditions into the computation of roll motion exceeding probability, namely the methods of natural initial condition, pre-computed initial condition and constant initial condition. For different input wave spectra and ship motion dynamics (in terms of the parametric excitation level modeled by a nonlinear roll equation), the performances of the three methods are carefully benchmarked and the superiority of the natural initial condition method is demonstrated. We finally show that the computation using the natural initial condition method can be greatly accelerated through a sequential sampling algorithm making use of the variational heteroscedastic Gaussian process regression.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源