论文标题

具有有限和嘈杂数据的表格葡萄的弱和半监督检测,分割和跟踪

Weakly and Semi-Supervised Detection, Segmentation and Tracking of Table Grapes with Limited and Noisy Data

论文作者

Ciarfuglia, Thomas A., Motoi, Ionut M., Saraceni, Leonardo, Fawakherji, Mulham, Sanfeliu, Alberto, Nardi, Daniele

论文摘要

水果和蔬菜的检测,分割和跟踪是精确农业的三个基本任务,实现了机器人的收获和产量估计应用。但是,现代算法是饥饿的数据,并非总是有可能收集足够的数据来采用最佳性能的监督方法。由于数据收集是一项昂贵且繁琐的任务,因此在农业中使用计算机视觉的能力通常是遥不可及的小型企业。在这种情况下的先前工作之后,我们提出了一种初始的弱监督解决方案,以减少在精确农业应用程序中获得最先进的检测和细分所需的数据,在这里,我们在这里改进该系统并探索果园中跟踪水果的问题。我们介绍了拉齐奥南部(意大利)葡萄的葡萄园案例,因为葡萄是由于遮挡,颜色和一般照明条件而难以分割的果实。我们考虑有一些可以用作源数据的初始标记数据的情况(\ eg葡萄酒葡萄数据),但它与目标数据有很大不同(例如表格葡萄数据)。为了改善目标数据的检测和分割,我们建议使用弱边界框标签训练分割算法,而对于跟踪,我们从运动算法中利用3D结构来从已标记的样品中生成新标签。最后,将两个系统组合在一起,以完整的半监督方法组合。与最先进的监督解决方案的比较表明,我们的方法如何能够训练以很少的标记图像和非常简单的标签来实现高性能的新型号。

Detection, segmentation and tracking of fruits and vegetables are three fundamental tasks for precision agriculture, enabling robotic harvesting and yield estimation applications. However, modern algorithms are data hungry and it is not always possible to gather enough data to apply the best performing supervised approaches. Since data collection is an expensive and cumbersome task, the enabling technologies for using computer vision in agriculture are often out of reach for small businesses. Following previous work in this context, where we proposed an initial weakly supervised solution to reduce the data needed to get state-of-the-art detection and segmentation in precision agriculture applications, here we improve that system and explore the problem of tracking fruits in orchards. We present the case of vineyards of table grapes in southern Lazio (Italy) since grapes are a difficult fruit to segment due to occlusion, color and general illumination conditions. We consider the case in which there is some initial labelled data that could work as source data (\eg wine grape data), but it is considerably different from the target data (e.g. table grape data). To improve detection and segmentation on the target data, we propose to train the segmentation algorithm with a weak bounding box label, while for tracking we leverage 3D Structure from Motion algorithms to generate new labels from already labelled samples. Finally, the two systems are combined in a full semi-supervised approach. Comparisons with state-of-the-art supervised solutions show how our methods are able to train new models that achieve high performances with few labelled images and with very simple labelling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源