论文标题
混合控制的和栅极,带有一个超导Qutrit和一个猫态Qutrit,并在混合纠缠状态制备中应用
Hybrid controlled-SUM gate with one superconducting qutrit and one cat-state qutrit and application in hybrid entangled state preparation
论文作者
论文摘要
与Qubit相比,一个Qudit(即$ d $ - 级别或$ d $ -State量子系统)为存储和流程信息提供了更大的Hilbert空间。另一方面,基于Qudit的混合量子计算通常需要执行具有不同性质或编码格式的Qudits的混合量子门。在这项工作中,我们考虑QUTRIT案例,即,$ d $ = 3的Qudit案例。我们提出了一种简单的方法,可以实现一个具有一个超导(SC)Qutrit和cat-State Qutrit的混合量子控制的和栅极。该栅极加单Qutrit门形成了用于使用Qutrits量子计算的通用三元逻辑门。我们的建议基于电路QED,基本上是通过使用与微波腔耦合的SC优夸夸特(四级量子系统)。门实现非常简单,因为它只需要一个基本操作。不需要经典脉冲或测量。 SC级别的辅助高能水平实际上是在栅极操作过程中被激发的,因此从该水平的分辨率得到了极大的抑制。作为此门的应用,我们讨论了一个SC Qutrit和一个猫态Qutrit的最大输入状态的产生。我们进一步分析了在电路QED中创建这种混合纠缠状态的实验可行性。该建议非常笼统,可以扩展以在广泛的物理系统中完成相同的任务,例如四级天然或人工原子与光学或微波腔耦合。
Compared with a qubit, a qudit (i.e., $d$-level or $d$-state quantum system) provides a larger Hilbert space to store and process information. On the other hand, qudit-based hybrid quantum computing usually requires performing hybrid quantum gates with qudits different in their nature or in their encoding format. In this work, we consider the qutrit case, i.e., the case for a qudit with $d$=3. We propose a simple method to realize a hybrid quantum controlled-SUM gate with one superconducting (SC) qutrit and a cat-state qutrit. This gate plus single-qutrit gates form a universal set of ternary logic gates for quantum computing with qutrits. Our proposal is based on circuit QED and operates essentially by employing a SC ququart (a four-level quantum system) dispersively coupled to a microwave cavity. The gate implementation is quite simple because it only requires a single basic operation. Neither classical pulse nor measurement is needed. The auxiliary higher energy level of the SC ququart is virtually excited during the gate operation, thus decoherence from this level is greatly suppressed. As an application of this gate, we discuss the generation of a hybrid maximally-entangled state of one SC qutrit and one cat-state qutrit. We further analyze the experimental feasibility of creating such hybrid entangled state in circuit QED. This proposal is quite general and can be extended to accomplish the same task in a wide range of physical system, such as a four-level natural or artificial atom coupled to an optical or microwave cavity.