论文标题

由$ t^2 $ invariant Preymplectic形式的核定义的叶子的紧凑叶子

Compact leaves of the foliation defined by the kernel of a $T^2$-invariant presymplectic form

论文作者

Hagiwara, Asuka

论文摘要

我们调查由A(2n + r)差的封闭式封闭式封闭式歧管M的确切的预成式形式的$dα$定义的叶片。对于r = 2,我们证明,叶片至少有两个叶子,如果p and t^$dα$dα$dα$ d Andipies and p.2 $ d),这是同源的。是恒定的,其中$ z_1 $,$ z_2 $是$ t^2 $ -ACTION的无限发电机。我们还以r $ \ geq $ 1进行概括。

We investigate the foliation defined by the kernel of an exact presymplectic form $dα$ of rank 2n on a (2n + r)-dimensional closed manifold M. For r = 2, we prove that the foliation has at least two leaves which are homeomorphic to a 2-dimensional torus, if M admits a locally free $T^2$-action which preserves $dα$ and satisfies that the function $α(Z_2)$ is constant, where $Z_1$, $Z_2$ are the infinitesimal generators of the $T^2$-action. We also give its generalization for r $\geq$ 1.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源