论文标题

意识到深神经网络分析中子星形可观测和密集物质方程的潜力

Realizing the potential of deep neural network for analyzing neutron star observables and dense matter equation of state

论文作者

Thete, Ameya, Banerjee, Kinjal, Malik, Tuhin

论文摘要

在高于饱和密度($ρ_0$)的密度下描述状态方程(EOS)方程的困难导致基于不同假设和技术的多种模型的出现。这些EOSS用来描述中子星(NS)会导致观察值的不同值。天体物理学的一个杰出目标是通过利用天体物理和重力波测量来限制密集物质EO。核物质参数在EOS膨胀围绕对称和非对称核物质的饱和密度膨胀时,是泰勒系数,并提供了EOS的物理动机表示。在本文中,我们介绍了一种基于学习的深度方法,以预测一组核物质参数的关键中子恒星可观察到的可观察结果,例如NS质量,NS半径和潮汐变形。使用生成的模拟数据,我们确认神经网络模型能够准确捕获有限核的基本物理,并在对称能量斜率,其曲率和由一组物理约束产生的对称能量斜率之间复制相互关系。我们还使用不同类别的物理模型生成的模拟数据测试我们的网络,这不是培训的一部分,以探讨结果模型依赖性的局限性。我们还使用贝叶斯推断研究了我们训练的模型的有效性,并表明我们的模型的性能与基于物理的模型相当,其计算成本较低的额外好处。

The difficulty in describing the equation of state (EoS) for nuclear matter at densities above the saturation density ($ρ_0$) has led to the emergence of a multitude of models based on different assumptions and techniques. These EoSs, when used to describe a neutron star (NS), lead to differing values of observables. An outstanding goal in astrophysics is to constrain the dense matter EoS by exploiting astrophysical and gravitational wave measurements. Nuclear matter parameters appear as Taylor coefficients in the expansion of the EoS around the saturation density of symmetric and asymmetric nuclear matter and provide a physically-motivated representation of the EoS. In this paper, we introduce a deep learning-based methodology to predict key neutron stars observables such as the NS mass, NS radius, and tidal deformability from a set of nuclear matter parameters. Using generated mock data, we confirm that the neural network model is able to accurately capture the underlying physics of finite nuclei and replicate inter-correlations between the symmetry energy slope, its curvature, and the tidal deformability arising from a set of physical constraints. We also test our network with mock data generated by a different class of physics model, which was not part of the training, to explore the limitations of model dependency in the results. We also study the validity of our trained model using Bayesian inference and show that the performance of our model is on par with physics-based models with the added benefit of much lower computational cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源