论文标题
使用Schrodinger Cat状态建造Qudit,并产生离散可变的Qudit和连续变化的Qudit之间的混合纠缠
Construction of a qudit using Schrodinger cat states and generation of hybrid entanglement between a discrete-variable qudit and a continuous-variable qudit
论文作者
论文摘要
我们表明,当适当地选择每个猫状态中编码的相位时,可以使用Bosonic模式的列中猫状态构建连续变量(CV)Qudit。通过使用Fock状态编码的构造的CV Qudit和离散变量(DV)Qudit,我们提出了一种方法,通过使用两个微波腔辅助使用,将CV QUDIT的最大纠缠状态和DV Qudit产生,并使用两个微波腔耦合到超电导QUTRIT的Flux flux flux flux flux rit。该提议依赖于一个腔的fock状态的叠加以及另一个腔的猫状态的初始制备。在准备每个腔的初始状态后,该提案仅需要两个基本操作,即,第一个操作使用两个腔与Qutrit的分散耦合,而第二个操作仅使用一个与Qutrit的一个腔的色散耦合。纠缠状态的生产是确定性的,并且随着每个Qudit的尺寸增加,操作时间会减小。另外,在整个操作过程中,耦合器QUTRIT保持基态,因此与Qutrit的脱纤维显着降低。例如,我们进一步讨论了基于电路QED的DV Qutrit和CV Qutrit的最大纠缠状态的实验可行性。该提案是通用的,可以通过使用两个微波或光学腔与天然或人工三级原子结合使用来实现相同的任务。
We show that a continuous-variable (CV) qudit can be constructed using quasiorthogonal cat states of a bosonic mode, when the phase encoded in each cat state is chosen appropriately. With the constructed CV qudit and the discrete-variable (DV) qudit encoded with Fock states, we propose an approach to generate the hybrid maximally entangled state of a CV qudit and a DV qudit by using two microwave cavities coupled to a superconducting flux qutrit. This proposal relies on the initial preparation of a superposition of Fock states of one cavity and the initial preparation of a cat state of the other cavity. After the initial state of each cavity is prepared, this proposal requires only two basic operations, i.e., the first operation employs the dispersive coupling of both cavities with the qutrit while the second operation uses the dispersive coupling of only one cavity with the qutrit. The entangled state production is deterministic and the operation time decreases as the dimensional size of each qudit increases. In addition, during the entire operation, the coupler qutrit remains in the ground state and thus decoherence from the qutrit is significantly reduced. As an example, we further discuss the experimental feasibility for generating the hybrid maximally entangled state of a DV qutrit and a CV qutrit based on circuit QED. This proposal is universal and can be extended to accomplish the same task, by using two microwave or optical cavities coupled to a natural or artificial three-level atom.