论文标题

胸部X射线上胸部疾病的长尾分类:一项新的基准研究

Long-Tailed Classification of Thorax Diseases on Chest X-Ray: A New Benchmark Study

论文作者

Holste, Gregory, Wang, Song, Jiang, Ziyu, Shen, Thomas C., Shih, George, Summers, Ronald M., Peng, Yifan, Wang, Zhangyang

论文摘要

成像检查(例如胸部X射线照相)将产生一小部分常见发现和一组不常见的发现。虽然训练有素的放射科医生可以通过研究一些代表性的例子来学习罕见条件的视觉呈现,但是教机器从这种“长尾”分布中学习的东西要困难得多,因为标准方法很容易偏向最常见的类别。在本文中,我们介绍了胸部X射线胸腔疾病特定领域的长尾学习问题的全面基准研究。我们专注于从自然分布的胸部X射线数据中学习,不仅优化了分类精度,不仅是常见的“头”类,而且还优化了罕见但至关重要的“尾巴”类。为此,我们引入了一个具有挑战性的新长尾X射线基准,以促进开发用于医学图像分类的长尾学习方法的研究。该基准由两个用于19-和20向胸部疾病分类的胸部X射线数据集组成,其中包含多达53,000的类别,只有7个标记的训练图像。我们在这种新的基准上评估了标准和最先进的长尾学习方法,分析了这些方法的哪些方面对长尾医学图像分类最有益,并总结了对未来算法设计的见解。数据集,训练有素的模型和代码可在https://github.com/vita-group/longtailcxr上找到。

Imaging exams, such as chest radiography, will yield a small set of common findings and a much larger set of uncommon findings. While a trained radiologist can learn the visual presentation of rare conditions by studying a few representative examples, teaching a machine to learn from such a "long-tailed" distribution is much more difficult, as standard methods would be easily biased toward the most frequent classes. In this paper, we present a comprehensive benchmark study of the long-tailed learning problem in the specific domain of thorax diseases on chest X-rays. We focus on learning from naturally distributed chest X-ray data, optimizing classification accuracy over not only the common "head" classes, but also the rare yet critical "tail" classes. To accomplish this, we introduce a challenging new long-tailed chest X-ray benchmark to facilitate research on developing long-tailed learning methods for medical image classification. The benchmark consists of two chest X-ray datasets for 19- and 20-way thorax disease classification, containing classes with as many as 53,000 and as few as 7 labeled training images. We evaluate both standard and state-of-the-art long-tailed learning methods on this new benchmark, analyzing which aspects of these methods are most beneficial for long-tailed medical image classification and summarizing insights for future algorithm design. The datasets, trained models, and code are available at https://github.com/VITA-Group/LongTailCXR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源