论文标题
当地戒指上的雪佛兰组的常规双纠正性
Regular bi-interpretability of Chevalley groups over local rings
论文作者
论文摘要
在本文中,我们证明,如果$ g(r)=g_π(φ,r)$ $(e(r)=e_π(φ,r))$是(基本的)等级$> 1 $> 1 $,$ r $是本地戒指($ \ frac {1} {1} {2} $ for loot Systems $ for loot Systems $ for loot Systems $ {\ Mathbf C} _l,{\ Mathbf F} _4,{\ MathBf G} _2 $,并带有$ \ frac {1} {3} $ for $ {\ MATHBF G} _ {2})$,然后是$ g(r)$(r)$(r)$(或$(r)$(r)$(r)$(r)$(r)是$(r)$(r)是$(r)。由于该定理的结果,我们表明,在本地环(带有列出的限制)上所有雪瓦利组的类是可以定义的,即,如果对于任意的组〜$ h $,我们有$ h \ equivg_π(φ,r),而不是ring $ r'\ equiv equiv r $ $ $ $ h $ h $ r'
In this paper we prove that if $G(R)=G_π(Φ,R)$ $(E(R)=E_π(Φ, R))$ is an (elementary) Chevalley group of rank $> 1$, $R$ is a local ring (with $\frac{1}{2}$ for the root systems ${\mathbf A}_2, {\mathbf B}_l, {\mathbf C}_l, {\mathbf F}_4, {\mathbf G}_2$ and with $\frac{1}{3}$ for ${\mathbf G}_{2})$, then the group $G(R)$ (or $(E(R)$) is regularly bi-interpretable with the ring~$R$. As a consequence of this theorem, we show that the class of all Chevalley groups over local rings (with the listed restrictions) is elementary definable, i.\,e., if for an arbitrary group~$H$ we have $H\equiv G_π(Φ, R)$, than there exists a ring $R'\equiv R$ such that $H\cong G_π(Φ,R')$.