论文标题

关于文本到SQL解析的调查:概念,方法和未来方向

A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future Directions

论文作者

Qin, Bowen, Hui, Binyuan, Wang, Lihan, Yang, Min, Li, Jinyang, Li, Binhua, Geng, Ruiying, Cao, Rongyu, Sun, Jian, Si, Luo, Huang, Fei, Li, Yongbin

论文摘要

文本到SQL解析是一项必不可少且具有挑战性的任务。文本到SQL解析的目的是根据关系数据库提供的证据将自然语言(NL)问题转换为其相应的结构性查询语言(SQL)。来自数据库社区的早期文本到SQL解析系统在重型人类工程和用户与系统互动的成本中取得了显着的进步。近年来,深层神经网络通过神经生成模型显着提出了这项任务,该模型会自动从输入NL问题学习到输出SQL查询。随后,大型的预训练的语言模型将文本到SQL解析任务的最先进达到了新的水平。在这项调查中,我们对文本到SQL解析的深度学习方法进行了全面评论。首先,我们介绍了文本到SQL解析语料库,可以归类为单转和多转。其次,我们提供了预先训练的语言模型和现有文本解析方法的系统概述。第三,我们向读者展示了文本到SQL解析所面临的挑战,并探索了该领域的一些潜在未来方向。

Text-to-SQL parsing is an essential and challenging task. The goal of text-to-SQL parsing is to convert a natural language (NL) question to its corresponding structured query language (SQL) based on the evidences provided by relational databases. Early text-to-SQL parsing systems from the database community achieved a noticeable progress with the cost of heavy human engineering and user interactions with the systems. In recent years, deep neural networks have significantly advanced this task by neural generation models, which automatically learn a mapping function from an input NL question to an output SQL query. Subsequently, the large pre-trained language models have taken the state-of-the-art of the text-to-SQL parsing task to a new level. In this survey, we present a comprehensive review on deep learning approaches for text-to-SQL parsing. First, we introduce the text-to-SQL parsing corpora which can be categorized as single-turn and multi-turn. Second, we provide a systematical overview of pre-trained language models and existing methods for text-to-SQL parsing. Third, we present readers with the challenges faced by text-to-SQL parsing and explore some potential future directions in this field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源