论文标题

球形:球形域的全景深度估计

SphereDepth: Panorama Depth Estimation from Spherical Domain

论文作者

Yan, Qingsong, Wang, Qiang, Zhao, Kaiyong, Li, Bo, Chu, Xiaowen, Deng, Fei

论文摘要

全景图像可以同时展示周围环境的完整信息,并且在虚拟旅游,游戏,机器人技术等方面具有许多优势。但是,全景深度估计的进度无法完全解决由常用的投影方法引起的变形和不连续性问题。本文提出了SphereDepth,这是一种新型的全景深度估计方法,该方法可以直接预测球形网格的深度而无需投影预测。核心思想是建立全景图像与球形网格之间的关系,然后使用深度神经网络在球形域上提取特征以预测深度。为了解决高分辨率全景数据带来的效率挑战,我们为拟议的球形网格处理框架介绍了两个超参数,以平衡推理速度和准确性。在三个公共全景数据集中验证,Spheredepth通过全景深度估计的最新方法实现了可比的结果。从球形域设置中受益,球形部可以产生高质量的点云,并大大减轻失真和不连续性的问题。

The panorama image can simultaneously demonstrate complete information of the surrounding environment and has many advantages in virtual tourism, games, robotics, etc. However, the progress of panorama depth estimation cannot completely solve the problems of distortion and discontinuity caused by the commonly used projection methods. This paper proposes SphereDepth, a novel panorama depth estimation method that predicts the depth directly on the spherical mesh without projection preprocessing. The core idea is to establish the relationship between the panorama image and the spherical mesh and then use a deep neural network to extract features on the spherical domain to predict depth. To address the efficiency challenges brought by the high-resolution panorama data, we introduce two hyper-parameters for the proposed spherical mesh processing framework to balance the inference speed and accuracy. Validated on three public panorama datasets, SphereDepth achieves comparable results with the state-of-the-art methods of panorama depth estimation. Benefiting from the spherical domain setting, SphereDepth can generate a high-quality point cloud and significantly alleviate the issues of distortion and discontinuity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源