论文标题
不确定性诱导的无源无监督域适应性的可传递性表示
Uncertainty-Induced Transferability Representation for Source-Free Unsupervised Domain Adaptation
论文作者
论文摘要
无源的无监督域适应性(SFUDA)旨在使用未标记的目标数据和训练有素的源域模型来学习目标域模型。以前的大多数SFUDA都致力于根据源知识推断目标数据的语义。在不衡量源知识的可传递性的情况下,这些方法不足以利用源知识,并且无法识别推断的目标语义的可靠性。但是,现有的可传递性测量需要源数据或目标标签,而SFUDA在SFUDA中是不可行的。为此,首先,我们提出了一种新颖的不确定性诱导的可传递性表示(UTR),该表示在没有源数据和目标标签的情况下,它利用不确定性作为工具来分析源编码的通道可传递性。域级UTR揭开了编码器通道向目标域的可传输程度,实例级别的UTR表征了推断目标语义的可靠性。其次,基于UTR,我们为SFUDA提出了一个新颖的校准适应框架(CAF),包括i)源知识校准模块,该模块指导目标模型学习可转移的源知识并丢弃了不可转移的源知识,并丢弃了目标语义校准模块,以校准无法校准无可靠的符号。在校准的源知识和目标语义的帮助下,该模型可以安全地适应目标领域。我们使用实验结果验证了方法的有效性,并证明所提出的方法在三个SFUDA基准测试中实现了最先进的性能。代码可在https://github.com/spiresearch/utr上找到。
Source-free unsupervised domain adaptation (SFUDA) aims to learn a target domain model using unlabeled target data and the knowledge of a well-trained source domain model. Most previous SFUDA works focus on inferring semantics of target data based on the source knowledge. Without measuring the transferability of the source knowledge, these methods insufficiently exploit the source knowledge, and fail to identify the reliability of the inferred target semantics. However, existing transferability measurements require either source data or target labels, which are infeasible in SFUDA. To this end, firstly, we propose a novel Uncertainty-induced Transferability Representation (UTR), which leverages uncertainty as the tool to analyse the channel-wise transferability of the source encoder in the absence of the source data and target labels. The domain-level UTR unravels how transferable the encoder channels are to the target domain and the instance-level UTR characterizes the reliability of the inferred target semantics. Secondly, based on the UTR, we propose a novel Calibrated Adaption Framework (CAF) for SFUDA, including i)the source knowledge calibration module that guides the target model to learn the transferable source knowledge and discard the non-transferable one, and ii)the target semantics calibration module that calibrates the unreliable semantics. With the help of the calibrated source knowledge and the target semantics, the model adapts to the target domain safely and ultimately better. We verified the effectiveness of our method using experimental results and demonstrated that the proposed method achieves state-of-the-art performances on the three SFUDA benchmarks. Code is available at https://github.com/SPIresearch/UTR.