论文标题

时间图学习的自我监督的Riemannian GNN具有变化的曲率

A Self-supervised Riemannian GNN with Time Varying Curvature for Temporal Graph Learning

论文作者

Sun, Li, Ye, Junda, Peng, Hao, Yu, Philip S.

论文摘要

在时间图上的表示学习引起了大量的研究注意,因为它在各种各样的现实世界应用中的基本重要性。尽管许多研究成功地获得了时间依赖的表示,但它仍然面临重大挑战。一方面,大多数现有方法都以一定的曲率限制了嵌入空间。然而,实际上,潜在的几何形状随着时间的流逝而在演变中的呈正曲率超球,零曲率欧几里得和负曲率双曲线空间之间移动。另一方面,这些方法通常需要丰富的标签来学习时间表示,从而明显限制了它们在真实应用程序的未标记图中的广泛使用。为了弥合这一差距,我们首次尝试研究了一般的Riemannian空间中自我监督的时间图表示学习的问题,从而支持随时间变化的曲率在超球,欧几里得和双曲线空间之间转移。在本文中,我们提出了一种新颖的自我监管的Riemannian图神经网络(SEXTRGNN)。具体而言,我们设计了具有理论上的时间编码的曲率曲率的Riemannian GNN,并随着时间的推移制定功能曲率,以模拟正,零和负曲率空间之间的演化转换。为了启用自我监督的学习,我们提出了一种新颖的重新享用自我对比方法,探索Riemannian空间本身而不扩大,并提出了一种基于边缘的自我监督的曲率学习,并使用RICCI曲率进行学习​​。广泛的实验表明了SelfRGNN的优越性,此外,案例研究表明了现实中时间图的时变曲率。

Representation learning on temporal graphs has drawn considerable research attention owing to its fundamental importance in a wide spectrum of real-world applications. Though a number of studies succeed in obtaining time-dependent representations, it still faces significant challenges. On the one hand, most of the existing methods restrict the embedding space with a certain curvature. However, the underlying geometry in fact shifts among the positive curvature hyperspherical, zero curvature Euclidean and negative curvature hyperbolic spaces in the evolvement over time. On the other hand, these methods usually require abundant labels to learn temporal representations, and thereby notably limit their wide use in the unlabeled graphs of the real applications. To bridge this gap, we make the first attempt to study the problem of self-supervised temporal graph representation learning in the general Riemannian space, supporting the time-varying curvature to shift among hyperspherical, Euclidean and hyperbolic spaces. In this paper, we present a novel self-supervised Riemannian graph neural network (SelfRGNN). Specifically, we design a curvature-varying Riemannian GNN with a theoretically grounded time encoding, and formulate a functional curvature over time to model the evolvement shifting among the positive, zero and negative curvature spaces. To enable the self-supervised learning, we propose a novel reweighting self-contrastive approach, exploring the Riemannian space itself without augmentation, and propose an edge-based self-supervised curvature learning with the Ricci curvature. Extensive experiments show the superiority of SelfRGNN, and moreover, the case study shows the time-varying curvature of temporal graph in reality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源