论文标题

为了充分利用基于NLP的设备映射OpenCL内核的优化

Towards making the most of NLP-based device mapping optimization for OpenCL kernels

论文作者

Vavaroutsos, Petros, Oroutzoglou, Ioannis, Masouros, Dimosthenis, Soudris, Dimitrios

论文摘要

如今,我们生活在一个极端的异质性时代。尽管常规CPU架构种类繁多,但GPU和FPGA等加速器设备也出现在前景中,爆炸了可用解决方案的池以执行应用程序。但是,由于硬件和软件之间的抽象关系,每个应用程序需求选择适当的设备是一项极具挑战性的任务。需要准确的自动优化算法才能应对当前硬件和软件的复杂性和多样性。最佳执行始终依赖于耗时的试用和错误方法。在过去的十年中,机器学习(ML)和自然语言处理(NLP)蓬勃发展,研究重点是深度建筑。在这种情况下,使用自然语言处理技术来源代码以进行自动调整任务是一个新兴的研究领域。在本文中,我们扩展了Cummins等人的工作,即DeepTune,该工作解决了加速OpenCL内核的最佳设备选择(CPU或GPU)的问题。我们确定了DeepTune的三个主要局限性,并基于这些局限性,我们提出了四个不同的DNN模型,可提供增强的源代码上下文信息。实验结果表明,我们提出的方法超过了康明斯等人的方法。工作,最多可提高预测准确性4%。

Nowadays, we are living in an era of extreme device heterogeneity. Despite the high variety of conventional CPU architectures, accelerator devices, such as GPUs and FPGAs, also appear in the foreground exploding the pool of available solutions to execute applications. However, choosing the appropriate device per application needs is an extremely challenging task due to the abstract relationship between hardware and software. Automatic optimization algorithms that are accurate are required to cope with the complexity and variety of current hardware and software. Optimal execution has always relied on time-consuming trial and error approaches. Machine learning (ML) and Natural Language Processing (NLP) has flourished over the last decade with research focusing on deep architectures. In this context, the use of natural language processing techniques to source code in order to conduct autotuning tasks is an emerging field of study. In this paper, we extend the work of Cummins et al., namely Deeptune, that tackles the problem of optimal device selection (CPU or GPU) for accelerated OpenCL kernels. We identify three major limitations of Deeptune and, based on these, we propose four different DNN models that provide enhanced contextual information of source codes. Experimental results show that our proposed methodology surpasses that of Cummins et al. work, providing up to 4\% improvement in prediction accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源