论文标题

经验和完整的贝叶斯估计皮特曼流程的类型

Empirical and Full Bayes estimation of the type of a Pitman-Yor process

论文作者

Franssen, S. E. M. P., van der Vaart, A. W.

论文摘要

皮特曼(Pitman)过程是一个随机的离散概率分布,可以将原子用于对物种的相对丰度进行建模。该过程由类型参数$σ$索引,该$ $σ$从分布的实现中控制有限样本中不同物种的数量。从Pitman-typer $σ> 0 $的Pitman流程中的大小$ n $的随机样本将包含$ n^σ$不同的值(``物种'')的顺序。在本文中,我们考虑了经验贝叶斯和完整贝叶斯方法对类型参数的估计。我们在经常贝叶斯后部的经验贝叶斯估计量和Bernstein-von Mises定理的渐近正态性中得出,在常见的频繁设置中,观察值是来自给定的真实分布的随机样本。我们还考虑了Pitman-Yor过程的第二个参数的估计,即先前的精度。我们将结果应用于在法医统计的环境中得出似然比的极限行为。

The Pitman-Yor process is a random discrete probability distribution of which the atoms can be used to model the relative abundance of species. The process is indexed by a type parameter $σ$, which controls the number of different species in a finite sample from a realization of the distribution. A random sample of size $n$ from the Pitman-Yor process of type $σ>0$ will contain of the order $n^σ$ distinct values (``species''). In this paper we consider the estimation of the type parameter by both empirical Bayes and full Bayes methods. We derive the asymptotic normality of the empirical Bayes estimator and a Bernstein-von Mises theorem for the full Bayes posterior, in the frequentist setup that the observations are a random sample from a given true distribution. We also consider the estimation of the second parameter of the Pitman-Yor process, the prior precision. We apply our results to derive the limit behaviour of the likelihood ratio in a setting of forensic statistics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源