论文标题
二维O(N)和Potts模型的状态空间
Spaces of states of the two-dimensional O(n) and Potts models
论文作者
论文摘要
我们确定具有通用参数的二维$ o(n)$(n)$和$ q $ - 状态potts $ n,q \ in \ mathbb {c} $作为其已知对称代数的表示形式的状态的空间。尽管最近制定了保形代数的相关表示形式,但仍在确定全球对称组的动作:$ O(n)$模型的正交组和对称组$ s_q $用于$ q $ $ -STATE POTTS模型。 我们通过两种独立方法来做到这一点。首先,我们计算模型的扭曲圆环分区功能。所讨论的扭曲是沿圆环的一个循环插入一个组元素:这破坏了模块化不变性,但允许分区函数将独特的分解为全局对称组的不可减至表示的字符。 我们的第二种方法将问题降低为确定某些图表代数的分支规则。对于$ o(n)$模型,我们将Brauer代数的表示形式分解为其无向琼斯的表示形式 - temperley--lieb subgerbra。对于$ Q $ - 州POTTS模型,我们将分区代数的表示形式分解为适当的亚词法的表示。我们发现这些分解的明确表达式是在某些图表上以及标准的Young Tableaux上的总和。 我们检查两种方法在许多情况下是否一致。此外,我们的状态空间与相应CFT的四点函数的最新引导结果一致。
We determine the spaces of states of the two-dimensional $O(n)$ and $Q$-state Potts models with generic parameters $n,Q\in \mathbb{C}$ as representations of their known symmetry algebras. While the relevant representations of the conformal algebra were recently worked out, it remained to determine the action of the global symmetry groups: the orthogonal group for the $O(n)$ model, and the symmetric group $S_Q$ for the $Q$-state Potts model. We do this by two independent methods. First we compute the twisted torus partition functions of the models at criticality. The twist in question is the insertion of a group element along one cycle of the torus: this breaks modular invariance, but allows the partition function to have a unique decomposition into characters of irreducible representations of the global symmetry group. Our second method reduces the problem to determining branching rules of certain diagram algebras. For the $O(n)$ model, we decompose representations of the Brauer algebra into representations of its unoriented Jones--Temperley--Lieb subalgebra. For the $Q$-state Potts model, we decompose representations of the partition algebra into representations of the appropriate subalgebra. We find explicit expressions for these decompositions as sums over certain sets of diagrams, and over standard Young tableaux. We check that both methods agree in many cases. Moreover, our spaces of states are consistent with recent bootstrap results on four-point functions of the corresponding CFTs.