论文标题

使用固定的衬垫自动编码器,基于表示学习的基于学习和可解释的反应堆系统诊断

Representation Learning based and Interpretable Reactor System Diagnosis Using Denoising Padded Autoencoder

论文作者

Li, Chengyuan, Qiu, Zhifang, Yan, Zhangrui, Li, Meifu

论文摘要

随着Gen III核反应堆的质量构建,使用深度学习(DL)技术是一种流行的趋势,以快速有效地诊断可能发生的事故。为了克服使用深度学习理论诊断反应堆事故的先前工作的常见问题,本文提出了一个诊断过程,以确保对嘈杂和残废的数据的鲁棒性,并且可以解释。首先,提出了一种新型的denoising Paded AutoCododer(DPAE),用于表示监视数据的表示,代表提取器仍在有效的数据上有效,具有高达25.0的信噪比,并监视丢失的数据丢失的数据高达40.0%。其次,提出了使用DPAE编码器提取表示形式的诊断框架,然后提出了浅统计学习算法,并在分类和回归任务评估衡量标准的逐步诊断方法上进行了逐步诊断方法的测试。最后,提出了使用SHAP和特征消融的分层解释算法,以分析输入监视参数的重要性并验证高重要性参数的有效性。这项研究的结果提供了一种参考方法,用于在具有高安全性要求的情况下构建强大而可解释的智能反应堆异常诊断系统。

With the mass construction of Gen III nuclear reactors, it is a popular trend to use deep learning (DL) techniques for fast and effective diagnosis of possible accidents. To overcome the common problems of previous work in diagnosing reactor accidents using deep learning theory, this paper proposes a diagnostic process that ensures robustness to noisy and crippled data and is interpretable. First, a novel Denoising Padded Autoencoder (DPAE) is proposed for representation extraction of monitoring data, with representation extractor still effective on disturbed data with signal-to-noise ratios up to 25.0 and monitoring data missing up to 40.0%. Secondly, a diagnostic framework using DPAE encoder for extraction of representations followed by shallow statistical learning algorithms is proposed, and such stepwise diagnostic approach is tested on disturbed datasets with 41.8% and 80.8% higher classification and regression task evaluation metrics, in comparison with the end-to-end diagnostic approaches. Finally, a hierarchical interpretation algorithm using SHAP and feature ablation is presented to analyze the importance of the input monitoring parameters and validate the effectiveness of the high importance parameters. The outcomes of this study provide a referential method for building robust and interpretable intelligent reactor anomaly diagnosis systems in scenarios with high safety requirements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源