论文标题
关于使用分类算法的心外膜和纵隔心脏脂肪组织的自动分割
On the Automated Segmentation of Epicardial and Mediastinal Cardiac Adipose Tissues Using Classification Algorithms
论文作者
论文摘要
对心脏周围环境的脂肪库的定量是评估与多种疾病相关的健康风险因素的准确程序。但是,由于人为的工作量,这种类型的评估并未在临床实践中广泛使用。这项工作提出了一种用于自动分割心脏脂肪垫的新技术。该技术基于将分类算法应用于心脏CT图像的分割。此外,我们广泛评估了几种算法在此任务上的性能,并讨论了哪些提供了更好的预测模型。实验结果表明,心外膜和纵隔脂肪分类的平均准确性为98.4%,真正的正正率为96.2%。平均而言,关于分割的患者和地面真相的骰子相似性指数等于96.8%。因此,迄今为止,我们的技术已经获得了心脏脂肪自动分割的最准确结果。
The quantification of fat depots on the surroundings of the heart is an accurate procedure for evaluating health risk factors correlated with several diseases. However, this type of evaluation is not widely employed in clinical practice due to the required human workload. This work proposes a novel technique for the automatic segmentation of cardiac fat pads. The technique is based on applying classification algorithms to the segmentation of cardiac CT images. Furthermore, we extensively evaluate the performance of several algorithms on this task and discuss which provided better predictive models. Experimental results have shown that the mean accuracy for the classification of epicardial and mediastinal fats has been 98.4% with a mean true positive rate of 96.2%. On average, the Dice similarity index, regarding the segmented patients and the ground truth, was equal to 96.8%. Therfore, our technique has achieved the most accurate results for the automatic segmentation of cardiac fats, to date.