论文标题

可验证的障碍物检测

Verifiable Obstacle Detection

论文作者

Bansal, Ayoosh, Kim, Hunmin, Yu, Simon, Li, Bo, Hovakimyan, Naira, Caccamo, Marco, Sha, Lui

论文摘要

对障碍物的看法仍然是自动驾驶汽车的关键安全问题。现实世界中的碰撞表明,导致致命碰撞的自治缺陷源于障碍的存在。开源自主驾驶实现显示了具有复杂相互依存的深神经网络的感知管道。这些网络无法完全验证,因此不适合安全至关重要的任务。 在这项工作中,我们提供了现有基于LIDAR的经典障碍物检测算法的安全验证。我们对该障碍检测算法的功能建立了严格的界限。考虑到安全标准,这种界限允许确定可靠地满足标准的激光雷达传感器属性。对于基于神经网络的感知系统,此类分析尚未实现。我们对障碍检测系统进行了严格的分析,并根据现实世界传感器数据具有经验结果。

Perception of obstacles remains a critical safety concern for autonomous vehicles. Real-world collisions have shown that the autonomy faults leading to fatal collisions originate from obstacle existence detection. Open source autonomous driving implementations show a perception pipeline with complex interdependent Deep Neural Networks. These networks are not fully verifiable, making them unsuitable for safety-critical tasks. In this work, we present a safety verification of an existing LiDAR based classical obstacle detection algorithm. We establish strict bounds on the capabilities of this obstacle detection algorithm. Given safety standards, such bounds allow for determining LiDAR sensor properties that would reliably satisfy the standards. Such analysis has as yet been unattainable for neural network based perception systems. We provide a rigorous analysis of the obstacle detection system with empirical results based on real-world sensor data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源