论文标题
量子制度中的两个随机访问代码的实例
Two instances of random access code in the quantum regime
论文作者
论文摘要
我们考虑了两类随机访问代码(RAC)的量子概括,并研究了此类任务成功概率的下限。它为研究某些信息处理任务的研究提供了有用的框架。头等舱基于一个随机访问代码,其量子输入和输出称为无标志量子RAC(NS-QRAC)[A. A. Grudka等。物理。 Rev. A 92,052312(2015)],其中允许无界的纠缠和受约束的经典通信,可以看作是具有约束的经典通信的量子传送,为此我们提供了量子下限。我们考虑对NS-QRAC场景进行两种修改,首先允许无限制的纠缠和约束量子通信,其次,允许有界的纠缠和不受限制的经典通信,在那里我们找到了传输保真度的一夫一妻制关系,与通常的交流方案相比,这是多个发件人和一个单个接收者和一个单个接收者。我们为这些情况提供了下限。第二类是基于带有量子通道和共享纠缠的随机访问代码[A。 Tavakoli等。 PRX量子2(4)040357(2021)]。我们研究了一组任务,其中两个由$ d $ bas的两个数字制成的输入在Qudit和最大纠缠状态上编码,可以看作是用约束量子通信的量子密集编码,我们为$ d = 2,3,4 $提供量子下限。使用的编码使用灰色代码。
We consider two classes of quantum generalisations of Random Access Code (RAC) and study lower bounds for probabilities of success for such tasks. It provides a useful framework for the study of certain information processing tasks with constrained resources. The first class is based on a random access code with quantum inputs and output known as No-Signalling Quantum RAC (NS-QRAC) [A. Grudka et al. Phys. Rev. A 92, 052312 (2015)], where unbounded entanglement and constrained classical communication are allowed, which can be seen as quantum teleportation with constrained classical communication, for which we provide a quantum lower bound. We consider two modifications to the NS-QRAC scenario, first where unbounded entanglement and constrained quantum communication is allowed and, second where bounded entanglement and unconstrained classical communication are allowed, where we find a monogamy relation for the transmission fidelities, which -- in contrast to the usual communication schemes -- involves multiple senders and a single receiver. We provide lower bounds for these scenarios. The second class is based on a random access code with a quantum channel and shared entanglement [A. Tavakoli et al. PRX Quantum 2 (4) 040357 (2021)]. We study the set of tasks where two inputs made of two digits of $d$-base are encoded over a qudit and a maximally entangled state, which can be seen as quantum dense coding with constrained quantum communication, for which we provide quantum lower bounds for $d=2,3,4$. The encoding employed utilises Gray codes.