论文标题
早期或幻影暗能量,自我相互作用,额外或大型中微子,原始磁场或弯曲的宇宙:探索$ H_0 $和$σ_8$问题的可能解决方案
Early or phantom dark energy, self-interacting, extra, or massive neutrinos, primordial magnetic fields, or a curved universe: An exploration of possible solutions to the $H_0$ and $σ_8$ problems
论文作者
论文摘要
在本文中,我们探讨了本地宇宙学扩展率的现有紧张局势,$ h_0 $,以及大规模结构的聚类幅度为$ 8 \,h^{ - 1} \ mathrm {mpc} $,$σ_8$,以及声称减轻这些紧张局势的模型。我们考虑七个型号:不断发展的暗能量($ W $ CDM),额外的辐射($ n_ \ mathrm {eff} $),大量的中微子,曲率,原始磁场(PMF),自我相互作用的中微子模型和早期的黑暗能源(EDE)。我们测试了这些模型对三个数据集的测试,这些数据集跨越了全范围可测量的宇宙学时代,具有明显的精度,并且对系统效应进行了充分的测试:Planck 2018宇宙微波背景数据,Sloan Digital Sky Surge Baryon Ocustic Oscoustic Oscoustic振荡量表测量值,以及类型IIA超级NEAPERNOVAE的PANTHEON CATALOG。我们使用最近的SH0ES $ H_0 $测量值和$σ_8$的几个度量(及其相关参数$ s_8 =σ_8\ sqrt {ω__\ Mathrm {M} /0.3} $)。我们发现,贝叶斯模型选择中的四个模型高于“强”阈值,$ W $ CDM,$ n_ \ mathrm {eff} $,PMF和EDE。但是,只有EDE还将完整数据集中的$ H_0 $张力减轻到2 $σ$以下。相反,没有模型可以减轻整个数据集中的$ S_8/σ_8$张力,在$ H_0 $和$ S_8/σ_8$张力的合并情况下,也没有比$λ$ CDM更好。
In this paper we explore the existing tensions in the local cosmological expansion rate, $H_0$, and amplitude of the clustering of large-scale structure at $8\, h^{-1}\mathrm{Mpc}$, $σ_8$, as well as models that claim to alleviate these tensions. We consider seven models: evolving dark energy ($w$CDM), extra radiation ($N_\mathrm{eff}$), massive neutrinos, curvature, primordial magnetic fields (PMF), self-interacting neutrino models, and early dark energy (EDE). We test these models against three data sets that span the full range of measurable cosmological epochs, have significant precision, and are well-tested against systematic effects: the Planck 2018 cosmic microwave background data, the Sloan Digital Sky Survey baryon acoustic oscillation scale measurements, and the Pantheon catalog of Type Ia supernovae. We use the recent SH0ES $H_0$ measurement and several measures of $σ_8$ (and its related parameter $S_8=σ_8\sqrt{Ω_\mathrm{m}/0.3}$). We find that four models are above the "strong" threshold in Bayesian model selection, $w$CDM, $N_\mathrm{eff}$, PMF, and EDE. However, only EDE also relieves the $H_0$ tension in the full data sets to below 2$σ$. Contrarily, no model alleviates the $S_8/σ_8$ tension in the full data set, nor does better than $Λ$CDM in the combined case of both $H_0$ and $S_8/σ_8$ tensions.