论文标题

西奈台球的自然平衡度量家族

A family of natural equilibrium measures for Sinai billiard flows

论文作者

Carrand, Jérôme

论文摘要

西奈台球在两道弯曲(即周期性洛伦兹气体)上流动是连续的流动,但并非无处可区分。假设有限的视野,我们将流量的平衡状态与西奈台球地图$ t $的平衡状态联系起来,这是一张不连续的地图。我们提出了与潜在$ g $相关的拓扑压力$ p _*(t,g)$的定义。我们证明,对于满足温和假设的任何分段hölder潜在的$ g $,$ p _*(t,g)$等于使用跨度或分离集的Bowen的定义。我们提供了足够的条件,在该条件下,潜力引起了西奈台球地图的平衡状态。我们证明,在这种情况下,均衡状态$μ_g$是独特的,伯努利,适应并为所有非空的开放式设置提供了积极的措施。为此,我们利用作用于各向异性Banach空间的正确选择的转移操作员,并通过配对其最大特征向量来构建该度量。最后,我们证明流动不变概率度量$ \barμ_g$,通过将$μ_g$的乘积与沿轨道的Lebesgue Measure一起获得,是Bernoulli和Flow Adpopted。我们给出了台球表的例子,其中存在一套满足这些足够条件的开放式潜力。

The Sinai billiard flow on the two-torus, i.e., the periodic Lorentz gas, is a continuous flow, but it is not everywhere differentiable. Assuming finite horizon, we relate the equilibrium states of the flow with those of the Sinai billiard map $T$ -- which is a discontinuous map. We propose a definition for the topological pressure $P_*(T,g)$ associated to a potential $g$. We prove that for any piecewise Hölder potential $g$ satisfying a mild assumption, $P_*(T,g)$ is equal to the definitions of Bowen using spanning or separating sets. We give sufficient conditions under which a potential gives rise to equilibrium states for the Sinai billiard map. We prove that in this case the equilibrium state $μ_g$ is unique, Bernoulli, adapted and gives positive measure to all nonempty open sets. For this, we make use of a well chosen transfer operator acting on anisotropic Banach spaces, and construct the measure by pairing its maximal eigenvectors. Last, we prove that the flow invariant probability measure $\bar μ_g$, obtained by taking the product of $μ_g$ with the Lebesgue measure along orbits, is Bernoulli and flow adapted. We give examples of billiard tables for which there exists an open set of potentials satisfying those sufficient conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源