论文标题

计数数字半群,按frobenius编号,多重性和深度计数

Counting numerical semigroups by Frobenius number, multiplicity, and depth

论文作者

Li, Sean

论文摘要

在1990年,Backelin表明,具有常数$ C_I $ f/2} $的FROBENIUS数字$ f $近的数值半群的数量,$ c_i \ cdot 2^{f/2} $ $ c_0 $和$ c_1 $,具体取决于$ f $的均等。在本文中,我们通过证明有$ \ lfloor {(q+1)^2/4} \ rfloor^{f/(2q-2)+O(f)} $ semigroups,带有frobenius编号$ f $ f $和深度$ q $,将此结果推广到任意深度的半群中。更一般地,对于固定的$ q \ geq 3 $,我们表明,给定$(q-1)m <f <qm $,frobenius number $ f $ and Mulutlicity $ m $的数值半群数是\ [\ left(\ left \ left \ left \ lftloor \ frac \ frac {(q+2)^2}^2}^2) \ lfloor \ frac {(q + 1)^2} {4} \ right \ rfloor^{(1-α)/2} \ right)^{m + o(m)} \]其中$α= f/m-(q-1)$。除其他事项外,这些结果暗示了Backelin的结果,增强了$ C_I $的界限,表征了相对于Frobenius数的限制多样性和属的限制分布,并解决了最近对具有固定Frobenius数字的半群数量的Singhal猜想,并解决了固定的Frobenius编号和最大嵌入尺寸。

In 1990, Backelin showed that the number of numerical semigroups with Frobenius number $f$ approaches $C_i \cdot 2^{f/2}$ for constants $C_0$ and $C_1$ depending on the parity of $f$. In this paper, we generalize this result to semigroups of arbitrary depth by showing there are $\lfloor{(q+1)^2/4}\rfloor^{f/(2q-2)+o(f)}$ semigroups with Frobenius number $f$ and depth $q$. More generally, for fixed $q \geq 3$, we show that, given $(q-1)m < f < qm$, the number of numerical semigroups with Frobenius number $f$ and multiplicity $m$ is\[\left(\left\lfloor \frac{(q+2)^2}{4} \right\rfloor^{α/2} \left \lfloor \frac{(q+1)^2}{4} \right\rfloor^{(1-α)/2}\right)^{m + o(m)}\] where $α= f/m - (q-1)$. Among other things, these results imply Backelin's result, strengthen bounds on $C_i$, characterize the limiting distribution of multiplicity and genus with respect to Frobenius number, and resolve a recent conjecture of Singhal on the number of semigroups with fixed Frobenius number and maximal embedding dimension.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源