论文标题

分割引导的域的适应和数据协调多设备视网膜光学相干断层扫描,使用循环一致的生成对抗网络

Segmentation-guided Domain Adaptation and Data Harmonization of Multi-device Retinal Optical Coherence Tomography using Cycle-Consistent Generative Adversarial Networks

论文作者

Chen, Shuo, Ma, Da, Lee, Sieun, Yu, Timothy T. L., Xu, Gavin, Lu, Donghuan, Popuri, Karteek, Ju, Myeong Jin, Sarunic, Marinko V., Beg, Mirza Faisal

论文摘要

光学相干断层扫描(OCT)是一种非侵入性技术,可在微米分辨率中捕获视网膜的横截面区域。它已被广泛用作辅助成像参考,以检测与眼睛有关的病理并预测疾病特征的纵向进展。视网膜层分割是至关重要的特征提取技术之一,其中视网膜层厚度的变化和由于液体的存在而引起的视网膜层变形与多种流行性眼部疾病(如糖尿病性视网膜病(DR)和年龄相关的黄斑变性(AMD))高度相关。但是,这些图像是从具有不同强度分布或换句话说的不同设备中获取的,属于不同的成像域。本文提出了一种分割引导的域适应方法,以使来自多个设备的图像适应单个图像域,其中可以使用最先进的预训练模型。它避免了即将到来的新数据集的手动标签的时间消耗以及现有网络的重新培训。网络的语义一致性和全球特征一致性将最大程度地减少许多研究人员报告的幻觉效果,这些效应对周期符合的生成对抗网络(Cyclegan)体系结构。

Optical Coherence Tomography(OCT) is a non-invasive technique capturing cross-sectional area of the retina in micro-meter resolutions. It has been widely used as a auxiliary imaging reference to detect eye-related pathology and predict longitudinal progression of the disease characteristics. Retina layer segmentation is one of the crucial feature extraction techniques, where the variations of retinal layer thicknesses and the retinal layer deformation due to the presence of the fluid are highly correlated with multiple epidemic eye diseases like Diabetic Retinopathy(DR) and Age-related Macular Degeneration (AMD). However, these images are acquired from different devices, which have different intensity distribution, or in other words, belong to different imaging domains. This paper proposes a segmentation-guided domain-adaptation method to adapt images from multiple devices into single image domain, where the state-of-art pre-trained segmentation model is available. It avoids the time consumption of manual labelling for the upcoming new dataset and the re-training of the existing network. The semantic consistency and global feature consistency of the network will minimize the hallucination effect that many researchers reported regarding Cycle-Consistent Generative Adversarial Networks(CycleGAN) architecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源