论文标题
使用回声状态网络对多稳定性的无模型预测
Model-free prediction of multistability using echo state network
论文作者
论文摘要
在复杂动力学领域,由于其发生的不可预测性和对初始条件的极端敏感性,多种吸引子一直引起了人们的关注。共存的吸引子在从气候到金融,生态系统到社会系统的各种系统中丰富。在本文中,我们研究了使用Echo状态网络(ESN)推断多稳定系统的不同动态的数据驱动方法。我们从参数感知的储层开始,并预测不同参数值的多种动力学。有趣的是,即使在远离与训练动力学相关的参数值相当远的遥远参数下,机器也能够几乎完美地重现动力学。在继续,我们也可以预测整个分叉图的显着准确性。我们扩展了这项研究,以探索未知参数值的多稳定吸引子的各种动力学。虽然我们在参数$ p $上只有一个Attarctor的动力学训练机器,但它可以以新的参数值$ p+ΔP$捕获共存吸引子的动力。继续为多组初始条件进行模拟,我们可以识别不同吸引子的盆地。我们通过将方案应用于两个不同的多稳定系统来概括结果。
In the field of complex dynamics, multistable attractors have been gaining a significant attention due to its unpredictability in occurrence and extreme sensitivity to initial conditions. Co-existing attractors are abundant in diverse systems ranging from climate to finance, ecological to social systems. In this article, we investigate a data-driven approach to infer different dynamics of a multistable system using echo state network (ESN). We start with a parameter-aware reservoir and predict diverse dynamics for different parameter values. Interestingly, machine is able to reproduce the dynamics almost perfectly even at distant parameters which lie considerably far from the parameter values related to the training dynamics. In continuation, we can predict whole bifurcation diagram significant accuracy as well. We extend this study for exploring various dynamics of multistable attractors at unknown parameter value. While, we train the machine with the dynamics of only one attarctor at parameter $p$, it can capture the dynamics of co-existing attractor at a new parameter value $p+Δp$. Continuing the simulation for multiple set of initial conditions, we can identify the basins for different attractors. We generalize the results by applying the scheme on two distinct multistable systems.