论文标题

深度异常检测和通过增强学习搜索

Deep Anomaly Detection and Search via Reinforcement Learning

论文作者

Chen, Chao, Wang, Dawei, Mao, Feng, Zhang, Zongzhang, Yu, Yang

论文摘要

半监督异常检测(AD)是一种数据挖掘任务,旨在从部分标记的数据集中学习功能,以帮助检测异常值。在本文中,我们将现有的半监督AD方法分为两类:无监督和基于监督的基于监督的,并指出其中大多数人对标记的数据的利用不足和未经标记的数据的探索不足。为了解决这些问题,我们提出了深度的异常检测和搜索(DADS),该检测(DADS)应用了增强学习(RL)以平衡剥削和探索。在培训过程中,代理商通过层次结构的数据集搜索可能的异常情况,并使用搜索异常来增强性能,从本质上讲,这本质上从集合学习的想法中汲取了教训。在实验上,我们将DAD与利用标记为已知异常的标记的几种最新方法进行了比较,以检测其他已知的异常和未知异常。结果表明,爸爸可以从未标记的数据中有效,精确地搜索异常,并向它们学习,从而实现良好的性能。

Semi-supervised Anomaly Detection (AD) is a kind of data mining task which aims at learning features from partially-labeled datasets to help detect outliers. In this paper, we classify existing semi-supervised AD methods into two categories: unsupervised-based and supervised-based, and point out that most of them suffer from insufficient exploitation of labeled data and under-exploration of unlabeled data. To tackle these problems, we propose Deep Anomaly Detection and Search (DADS), which applies Reinforcement Learning (RL) to balance exploitation and exploration. During the training process, the agent searches for possible anomalies with hierarchically-structured datasets and uses the searched anomalies to enhance performance, which in essence draws lessons from the idea of ensemble learning. Experimentally, we compare DADS with several state-of-the-art methods in the settings of leveraging labeled known anomalies to detect both other known anomalies and unknown anomalies. Results show that DADS can efficiently and precisely search anomalies from unlabeled data and learn from them, thus achieving good performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源