论文标题

具有有效评分功能的积极学习,用于半监督的时间动作定位

Active Learning with Effective Scoring Functions for Semi-Supervised Temporal Action Localization

论文作者

Li, Ding, Yang, Xuebing, Tang, Yongqiang, Zhang, Chenyang, Zhang, Wensheng

论文摘要

时间动作定位(TAL)旨在预测未修剪视频(即开始和结束时间)中动作实例的行动类别和时间边界。通常在大多数现有作品中都采用了完全监督的解决方案,并被证明是有效的。这些解决方案中的实际瓶颈之一是所需的大量标记培训数据。为了降低昂贵的人类标签成本,本文重点介绍了一项很少调查但实用的任务,称为半监督TAL,并提出了一种有效的主动学习方法,名为Al-Stal。我们利用四个步骤来积极选择具有很高信息性的视频样本,并培训了名为\ emph {train,Query,Annotate,Append}的本地化模型。考虑定位模型不确定性的两个评分函数配备了ALSTAL,从而促进了视频样本等级和选择。人们将预测标签分布的熵作为不确定性的度量,称为时间提案熵(TPE)。另一个引入了基于相邻行动建议之间的共同信息的新指标,并评估视频样本的信息性,称为时间上下文不一致(TCI)。为了验证提出的方法的有效性,我们在两个基准数据集Thumos'14和ActivityNet 1.3上进行了广泛的实验。实验结果表明,与完全监督的学习相比,AL-Stal的表现优于现有竞争对手,并实现令人满意的表现。

Temporal Action Localization (TAL) aims to predict both action category and temporal boundary of action instances in untrimmed videos, i.e., start and end time. Fully-supervised solutions are usually adopted in most existing works, and proven to be effective. One of the practical bottlenecks in these solutions is the large amount of labeled training data required. To reduce expensive human label cost, this paper focuses on a rarely investigated yet practical task named semi-supervised TAL and proposes an effective active learning method, named AL-STAL. We leverage four steps for actively selecting video samples with high informativeness and training the localization model, named \emph{Train, Query, Annotate, Append}. Two scoring functions that consider the uncertainty of localization model are equipped in AL-STAL, thus facilitating the video sample rank and selection. One takes entropy of predicted label distribution as measure of uncertainty, named Temporal Proposal Entropy (TPE). And the other introduces a new metric based on mutual information between adjacent action proposals and evaluates the informativeness of video samples, named Temporal Context Inconsistency (TCI). To validate the effectiveness of proposed method, we conduct extensive experiments on two benchmark datasets THUMOS'14 and ActivityNet 1.3. Experiment results show that AL-STAL outperforms the existing competitors and achieves satisfying performance compared with fully-supervised learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源