论文标题
Hytgraph:使用混合传输管理的GPU加速图处理
HyTGraph: GPU-Accelerated Graph Processing with Hybrid Transfer Management
论文作者
论文摘要
使用内存限制的GPU处理大图需要解决主机GPU数据传输的问题,这是关键的性能瓶颈。现有的GPU加速图处理框架通过在运行时管理主动子图传输来减少数据传输。一些框架基于带有过滤器或压实的明确内存副本采用明确的传输管理方法。相比之下,其他人则基于零拷贝或统一记忆的按需访问采用隐式转移管理方法。进行了深入的分析后,我们发现随着主动顶点的发展,两种方法的性能在不同的工作负载中有所不同。由于大量的冗余数据传输,高CPU压实开销或较低的带宽利用率,采用单一方法通常会导致次优性能。 在这项工作中,我们提出了一种混合转移管理方法,以在运行时采用两种方法的优点,目的是达到每次迭代中最短的执行时间。基于混合方法,我们提出了Hytgraph,这是一个GPU加速图处理框架,该框架通过一组有效的任务调度优化以提高性能的优化授权。我们对现实世界和合成图的实验结果表明,在现有的GPU加速图处理系统(包括GRUS,Subway和Eomogi)上,Hytgraph可实现高达10.27倍的速度。
Processing large graphs with memory-limited GPU needs to resolve issues of host-GPU data transfer, which is a key performance bottleneck. Existing GPU-accelerated graph processing frameworks reduce the data transfers by managing the active subgraph transfer at runtime. Some frameworks adopt explicit transfer management approaches based on explicit memory copy with filter or compaction. In contrast, others adopt implicit transfer management approaches based on on-demand access with zero-copy or unified-memory. Having made intensive analysis, we find that as the active vertices evolve, the performance of the two approaches varies in different workloads. Due to heavy redundant data transfers, high CPU compaction overhead, or low bandwidth utilization, adopting a single approach often results in suboptimal performance. In this work, we propose a hybrid transfer management approach to take the merits of both the two approaches at runtime, with an objective to achieve the shortest execution time in each iteration. Based on the hybrid approach, we present HytGraph, a GPU-accelerated graph processing framework, which is empowered by a set of effective task scheduling optimizations to improve the performance. Our experimental results on real-world and synthesized graphs demonstrate that HyTGraph achieves up to 10.27X speedup over existing GPU-accelerated graph processing systems including Grus, Subway, and EMOGI.