论文标题

可计数的严格反向数学

Countable strict reverse mathematics

论文作者

Batyrshin, Ilnur

论文摘要

我们研究子系统$ com_ {fcn} $,$ comi_ {fcn} $和$ pra_ {fcn} $ function $ etf $的基础理论,是可计数的严格反向数学的基础理论。我们表明,对一元,二进制和三元函数的任何变量的归纳是$ com_ {fcn} $的成对等效的。我们证明,削弱的原始递归axiom $ wpra $等效于$ comi_ {fcn} $上的原始递归axiom $ pra $。我们表明,置换公理和最小值公理$ min^1 $,$ min^2 $,$ min^3 $是$ pra_ {fcn} $的成对等效物。因此,我们介绍了$ ETF $的几种等效公理。

We investigate subsystems $COM_{fcn}$, $COMI_{fcn}$ and $PRA_{fcn}$ of the elementary theory of functions $ETF$, the base theory for countable strict reverse mathematics. We show that inductions on any variable for unary, binary and ternary functions are pairwise equivalent over $COM_{fcn}$. We prove that weakened primitive recursion axiom $WPRA$ is equivalent to primitive recursion axiom $PRA$ over $COMI_{fcn}$. We show that permutation axiom and minimization axioms $MIN^1$, $MIN^2$, $MIN^3$ are pairwise equivalent over $PRA_{fcn}$. Thus, we present several equivalent axiomatizations of $ETF$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源