论文标题
模拟theta函数和n = 3超符合模块的字符iv
Mock theta functions and characters of N=3 superconformal modules IV
论文作者
论文摘要
在本文中,我们获得了模拟theta功能的明确公式$φ^{[m,s]}(τ,z_1,z_2,z_2,t)$ $(m \ in \ frac12 \ mathbf {n},s \ in \ frac12 \ frac12 \ mathbf {z}) Kac-Peterson的身份。随着其应用,我们研究了n = 3个模块的张量产物的分支功能,并证明了上一篇论文中的公式。
In this paper we obtain explicit formulas for mock theta functions $Φ^{[m,s]}(τ, z_1, z_2,t)$ $(m \in \frac12 \mathbf{N}, s \in \frac12 \mathbf{Z})$ by using the coroot lattice of the Lie superalgebra $D(2,1,a)$ and the Kac-Peterson's identity. As its application, we study the branching functions of tensor products of N=3 modules and prove the formula conjectured in the previous paper.