论文标题
用于表示部分观察到的子图的表示模型和基准
Models and Benchmarks for Representation Learning of Partially Observed Subgraphs
论文作者
论文摘要
子图是图中丰富的子结构,并且可以在现实世界任务中部分观察到它们的节点和边缘。在部分观察结果下,现有的节点或子图级消息会产生次优表示。在本文中,我们制定了一项新的学习表征的新任务。为了解决此问题,我们建议将部分子图信息(PSI)框架(PSI)框架概括为我们的框架,包括DGI,Infopraph,MVGRL和GraphCl在内的现有InfoMAX模型。这些模型最大程度地提高了部分子图的摘要与从节点到完整子图的各种子结构之间的共同信息。此外,我们建议使用$ K $ -HOP PSI的新型两阶段模型,它重建了完整子图的表示,并提高了其从不同局部全球结构中的表现力。在为此问题设计的培训和评估方案下,我们在三个现实世界数据集上进行实验,并证明PSI模型的表现优于基准。
Subgraphs are rich substructures in graphs, and their nodes and edges can be partially observed in real-world tasks. Under partial observation, existing node- or subgraph-level message-passing produces suboptimal representations. In this paper, we formulate a novel task of learning representations of partially observed subgraphs. To solve this problem, we propose Partial Subgraph InfoMax (PSI) framework and generalize existing InfoMax models, including DGI, InfoGraph, MVGRL, and GraphCL, into our framework. These models maximize the mutual information between the partial subgraph's summary and various substructures from nodes to full subgraphs. In addition, we suggest a novel two-stage model with $k$-hop PSI, which reconstructs the representation of the full subgraph and improves its expressiveness from different local-global structures. Under training and evaluation protocols designed for this problem, we conduct experiments on three real-world datasets and demonstrate that PSI models outperform baselines.