论文标题

Putman-Wieland猜想的代数几何学介绍

An introduction to the algebraic geometry of the Putman-Wieland conjecture

论文作者

Landesman, Aaron, Litt, Daniel

论文摘要

我们对Putman-Wieland猜想的先前结果给出了代数和几何观点。这导致了“折纸”曲线家族的有趣新结构,这些曲线的雅各布人具有高维的各向同性同等同学因素。我们还解释了Marković的工作后,Putman-Wieland猜想的过度椭圆形类似物如何失败。

We give algebraic and geometric perspectives on our prior results toward the Putman-Wieland conjecture. This leads to interesting new constructions of families of "origami" curves whose Jacobians have high-dimensional isotrivial isogeny factors. We also explain how a hyperelliptic analogue of the Putman-Wieland conjecture fails, following work of Marković.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源