论文标题

Putman-Wieland猜想的代数几何形状的应用

Applications of the algebraic geometry of the Putman-Wieland conjecture

论文作者

Landesman, Aaron, Litt, Daniel

论文摘要

我们向Putman-Wieland的猜想提供了两项先前工作的申请。首先,我们推断了马尔可维奇·托斯(Marković-Tošić)在虚拟映射封面同源性的班级组合中的结果。其次,令$ g \ geq 2 $,让$σ_{g',n'} \ toσ_{g,n} $为有限的$ h $ - 拓扑表面。我们在$ h $ - 异型组件上显示了$ h^1(σ_{g'})$的$σ_{g,n+1} $的映射类组的虚拟动作。

We give two applications of our prior work toward the Putman-Wieland conjecture. First, we deduce a strengthening of a result of Marković-Tošić on virtual mapping class group actions on the homology of covers. Second, let $g\geq 2$ and let $Σ_{g',n'}\to Σ_{g, n}$ be a finite $H$-cover of topological surfaces. We show the virtual action of the mapping class group of $Σ_{g,n+1}$ on an $H$-isotypic component of $H^1(Σ_{g'})$ has non-unitary image.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源