论文标题
拓扑延期模式锁激光器
Topological Temporally Mode-Locked Laser
论文作者
论文摘要
模式锁定激光器在现代科学和技术中起关键作用。它们不仅为超快光学奠定了基础,并在非线性光学元件中起着核心作用,而且在成像,电信,传感和计算方面也具有重要的应用。尽管大量的努力集中在模式上锁定激光器的光谱模式,但对模式锁定其时间模式的关注很少。但是,时间模式锁定为开发新技术并研究非线性,非甲米和拓扑现象的交集提供了充足的机会,近年来,这些现象一直是拓扑物理领域的优先事项。在这里,我们从理论上预测并在实验上实现了与时间延迟的腔内耦合的激光腔中的拓扑时间模式锁定。这些耦合将非热点间隙拓扑引入激光器的时间模式,并以有效的非本地非线性(在我们的激光腔中生成模式锁定的时间结构)共谋,其形式可以通过适当地设计下面的耦合来量身定制。我们利用这种方法来实现非线性驱动的非铁皮皮肤效应,并且我们表明激光的拓扑时间模式是强大的,可抵抗疾病引起的定位。我们的拓扑时间模式锁定方案的灵活性和可编程性揭示了在模式锁定的光子谐振器中研究非线性和非铁质拓扑现象的新机会,并且可以使模式激光器在感测和光学计算中的新应用。
Mode-locked lasers play a key role in modern science and technology. Not only do they lay the foundation for ultrafast optics and play a central role in nonlinear optics, but also they have important applications in imaging, telecommunications, sensing, and computing. While substantial efforts have focused on mode-locking the spectral modes of lasers, relatively little attention has been paid to mode-locking their temporal modes. However, temporal mode-locking presents ample opportunities to develop new technologies and to study the intersection of nonlinear, non-Hermitian, and topological phenomena, which, in recent years, has been a priority for the field of topological physics. Here, we theoretically predict and experimentally realize topological temporal mode-locking in a laser cavity with time-delayed intracavity couplings. These couplings introduce non-Hermitian point-gap topology into the temporal modes of our laser and conspire with an effective nonlocal nonlinearity to generate mode-locked temporal structures in our laser cavity, whose form can be tailored by suitably engineering the underlying couplings. We harness this approach to realize a nonlinearity-driven non-Hermitian skin effect, and we show that the topological temporal modes of our laser are robust against disorder-induced localization. The flexibility and programmability of our topological temporal mode-locking scheme reveals new opportunities to study nonlinear and non-Hermitian topological phenomena in mode-locked photonic resonators and could enable new applications of mode-locked lasers to sensing and optical computing.