论文标题
基于扩散的分子产生具有信息丰富的先验桥
Diffusion-based Molecule Generation with Informative Prior Bridges
论文作者
论文摘要
基于AI的分子生成为大量的生物医学科学和工程提供了一种有希望的方法,例如抗体设计,水解酶工程或疫苗开发。由于分子受物理定律的管辖,因此一个关键的挑战是将先前的信息纳入训练程序中,以产生高质量和现实的分子。我们提出了一种简单而新颖的方法,以引导基于扩散的生成模型培训具有物理和统计的先验信息。这是通过构建物理知情的扩散桥,保证在固定末端产生给定观察的随机过程来实现的。我们开发了一种基于Lyapunov函数的方法来构建和确定桥梁,并为高质量分子生成和均匀性促进的3D点云生成的一些信息的先验桥提出了一些建议。通过全面的实验,我们表明我们的方法为3D生成任务提供了强大的方法,从而产生具有更好质量和稳定性得分的分子结构,并且具有更高质量的分布点云。
AI-based molecule generation provides a promising approach to a large area of biomedical sciences and engineering, such as antibody design, hydrolase engineering, or vaccine development. Because the molecules are governed by physical laws, a key challenge is to incorporate prior information into the training procedure to generate high-quality and realistic molecules. We propose a simple and novel approach to steer the training of diffusion-based generative models with physical and statistics prior information. This is achieved by constructing physically informed diffusion bridges, stochastic processes that guarantee to yield a given observation at the fixed terminal time. We develop a Lyapunov function based method to construct and determine bridges, and propose a number of proposals of informative prior bridges for both high-quality molecule generation and uniformity-promoted 3D point cloud generation. With comprehensive experiments, we show that our method provides a powerful approach to the 3D generation task, yielding molecule structures with better quality and stability scores and more uniformly distributed point clouds of high qualities.