论文标题

弱近似与Brauer-Manin障碍物的无变异性

Non-invariance of weak approximation with Brauer-Manin obstruction for surfaces

论文作者

Wu, Han

论文摘要

在本文中,我们研究了数量场的场扩展,研究表面上具有Brauer-Manin障碍物的弱近似性能。对于M. Stoll的猜想,对于L/K的任何非平凡扩展,我们在K上构建了平滑,投影和几何连接的表面,以使其满足所有Archimedean位置的Brauer-Manin障碍物的弱近似,而其基本基本的基础变化为L失败。然后,我们用明确的无条件示例来说明这种结构。

In this paper, we study the property of weak approximation with Brauer-Manin obstruction for surfaces with respect to field extensions of number fields. For any nontrivial extension of number fields L/K, assuming a conjecture of M. Stoll, we construct a smooth, projective, and geometrically connected surface over K such that it satisfies weak approximation with Brauer-Manin obstruction off all archimedean places, while its base change to L fails. Then we illustrate this construction with an explicit unconditional example.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源