论文标题

将电子旋转穿过硅量子点阵列

Shuttling an electron spin through a silicon quantum dot array

论文作者

Zwerver, A. M. J., Amitonov, S. V., de Snoo, S. L., Mądzik, M. T., Russ, M., Sammak, A., Scappucci, G., Vandersypen, L. M. K.

论文摘要

被数十微米分隔的量子位之间的相干链接有望促进可伸缩的量子计算体系结构,用于电源定义的量子点中的自旋Qubits。这些链接为量子阵列之间的经典片上控制电子设备创造了空间,这可以帮助减轻所谓的接线瓶颈。实现遥远的自旋速度之间相干链接的有前途的方法包括将旋转穿过一系列量子点的穿刺。在这里,我们使用28SI/SIGE异质结构中的四个隧道耦合量子点的线性阵列来创建一个短量子链接。我们通过顺序调节每个量子点的电化学势,将电子自旋穿过量子点阵列。通过反复脉冲门,我们将电子向前和向后穿过阵列的250次,这对应于总距离约80μm。在这些实验中,我们估计了每跳的旋转型概率,并得出结论,这远低于每跳的0.01%。

Coherent links between qubits separated by tens of micrometers are expected to facilitate scalable quantum computing architectures for spin qubits in electrically-defined quantum dots. These links create space for classical on-chip control electronics between qubit arrays, which can help to alleviate the so-called wiring bottleneck. A promising method of achieving coherent links between distant spin qubits consists of shuttling the spin through an array of quantum dots. Here, we use a linear array of four tunnel-coupled quantum dots in a 28Si/SiGe heterostructure to create a short quantum link. We move an electron spin through the quantum dot array by adjusting the electrochemical potential for each quantum dot sequentially. By pulsing the gates repeatedly, we shuttle an electron forward and backward through the array up to 250 times, which corresponds to a total distance of approximately 80 μm. We make an estimate of the spin-flip probability per hop in these experiments and conclude that this is well below 0.01% per hop.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源