论文标题

使用离散时间量子跳跃模型在FMO复合物中的站点对之间的非马克维亚性

Non-Markovianity between site-pairs in FMO complex using discrete-time quantum jump model

论文作者

Kundu, Mousumi, Chandrashekar, C. M.

论文摘要

众所周知,存在于绿色硫细菌中的Fenna-Mathews-Olson(FMO)复合物可以介导轻度收获的氯化体和膜上膜的细菌反应中心之间的激发能的转移。由于这种运输过程的效率很高,因此它是一种经过广泛研究的色素 - 蛋白质复合系统,其最终在其他系统中建模和工程相似的动态,并将其用于实时应用。一些研究将运输效率的提高归因于波浪样行为和非马克维亚量子跳跃,分别导致量子相干性的长期和复兴。由于这些系统中的动态存在于量子古典状态中,因此对这种动力学的量子模拟将有助于探索量子特征在增强运输效率方面的微妙作用,而运输效率仍然尚未确定。对FMO综合体中动力学的离散模拟可以帮助有效地工程进行热浴和通过系统控制环境。在这项工作中,当内部结构和环境效应有利于更快的传输时,使用离散的量子跳跃模型,我们显示并量化了特定站点对的较高非马克维亚记忆效应。结果,我们的研究倾向于随着运输效率的提高,量子跳跃中的非马克维亚性之间的联系。

The Fenna-Mathews-Olson (FMO) complex present in green sulphur bacteria is known to mediate the transfer of excitation energy between light-harvesting chlorosomes and membrane-embedded bacterial reaction centres. Due to the high efficiency of such transport process, it is an extensively studied pigment-protein complex system with the eventual aim of modelling and engineering similar dynamics in other systems and use it for real-time application. Some studies have attributed the enhancement of transport efficiency to wave-like behaviour and non-Markovian quantum jumps resulting in long-lived and revival of quantum coherence, respectively. Since dynamics in these systems reside in the quantum-classical regime, quantum simulation of such dynamics will help in exploring the subtle role of quantum features in enhancing the transport efficiency, which has remained unsettled. Discrete simulation of the dynamics in the FMO complex can help in efficient engineering of the heat bath and controlling the environment with the system. In this work, using the discrete quantum jump model we show and quantify the presence of higher non-Markovian memory effects in specific site-pairs when internal structures and environmental effects are in favour of faster transport. As a consequence, our study leans towards the connection between non-Markovianity in quantum jumps with the enhancement of transport efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源