论文标题
对称三角复合物的离散摩尔斯理论
Discrete Morse theory for symmetric Delta-complexes
论文作者
论文摘要
我们将Forman的离散摩尔斯理论概括为对称$δ$ - 复杂的背景。作为一个应用程序,我们证明了原始$ la^{\ mathrm {trop}链接的COLOOP子复合物,\ Mathrm {p}} _ g $在主要极化的热带热带Abelian Abelian dimension $ g $的模型空间中,相对于完美的锥分解均为合同。
We generalize Forman's discrete Morse theory to the context of symmetric $Δ$-complexes. As an application, we prove that the coloop subcomplex of the link of the origin $LA^{\mathrm{trop},\mathrm{P}}_g$ in the moduli space of principally polarized tropical abelian varieties of dimension $g$ with respect to the perfect cone decomposition is contractible.