论文标题
扩展和解释:解释非常长的语言模型
Extend and Explain: Interpreting Very Long Language Models
论文作者
论文摘要
虽然变形金刚语言模型(LMS)是信息提取的最新技术,但长文本介绍了需要次优的预处理步骤或替代模型体系结构的计算挑战。稀疏的注意力LM可以代表更长的序列,克服性能障碍。但是,目前尚不清楚如何解释这些模型的预测,因为并非所有令牌都在自我发项层中相互参加,而在运行时,长序列对解释性算法构成了计算挑战,而运行时取决于文档长度。这些挑战在文档可能很长的医学环境中是严重的,机器学习(ML)模型必须是审核和值得信赖的。我们介绍了一种新颖的蒙版抽样程序(MSP),以识别有助于预测的文本块,将MSP应用于预测医学文本诊断的背景下,并通过两位临床医生的盲目审查来验证我们的方法。我们的方法比以前的最先进的临床信息块高约1.7倍,速度更快100倍,并且可用于生成重要的短语对。 MSP特别适合长LMS,但可以应用于任何文本分类器。我们提供了MSP的一般实施。
While Transformer language models (LMs) are state-of-the-art for information extraction, long text introduces computational challenges requiring suboptimal preprocessing steps or alternative model architectures. Sparse attention LMs can represent longer sequences, overcoming performance hurdles. However, it remains unclear how to explain predictions from these models, as not all tokens attend to each other in the self-attention layers, and long sequences pose computational challenges for explainability algorithms when runtime depends on document length. These challenges are severe in the medical context where documents can be very long, and machine learning (ML) models must be auditable and trustworthy. We introduce a novel Masked Sampling Procedure (MSP) to identify the text blocks that contribute to a prediction, apply MSP in the context of predicting diagnoses from medical text, and validate our approach with a blind review by two clinicians. Our method identifies about 1.7x more clinically informative text blocks than the previous state-of-the-art, runs up to 100x faster, and is tractable for generating important phrase pairs. MSP is particularly well-suited to long LMs but can be applied to any text classifier. We provide a general implementation of MSP.