论文标题

方向性总变化的CNC方法

A CNC approach for Directional Total Variation

论文作者

Scrivanti, Gabriele, Chouzenoux, Emilie, Pesquet, Jean-Christophe

论文摘要

在信号和图像处理中产生的许多变异反问题方法的许多方法的核心包括促进所寻求的解决方案以在合理的空间中具有稀疏的表示。在这种情况下,至关重要的任务是选择良好的稀疏性,这可以确保解决方案的质量与由此产生的计算成本之间进行良好的权衡。最近引入的凸 - 非征信(CNC)策略似乎是一个很大的妥协,因为它结合了非凸刺刺激性功能的高定性性能,并提供处理凸优化问题的便利性。这项工作提出了一种新的变分配方,以在图像DeNoising的背景下实现CNC方法。通过适当利用二元性能,我们的配方允许涵盖复杂的定向总变化(DTV)先验。我们还提出了一种有效的优化策略,用于最小化问题。我们在数值示例中说明了与标准凸完全变化Denoiser相比,所得CNC-DTV方法的良好性能。

The core of many approaches for the resolution of variational inverse problems arising in signal and image processing consists of promoting the sought solution to have a sparse representation in a well-suited space. A crucial task in this context is the choice of a good sparsity prior that can ensure a good trade-off between the quality of the solution and the resulting computational cost. The recently introduced Convex-Non-Convex (CNC) strategy appears as a great compromise, as it combines the high qualitative performance of non-convex sparsity-promoting functions with the convenience of dealing with convex optimization problems. This work proposes a new variational formulation to implement CNC approach in the context of image denoising. By suitably exploiting duality properties, our formulation allows to encompass sophisticated directional total variation (DTV) priors. We additionally propose an efficient optimisation strategy for the resulting convex minimisation problem. We illustrate on numerical examples the good performance of the resulting CNC-DTV method, when compared to the standard convex total variation denoiser.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源